Sparse Regularization via Convex Analysis
نویسندگان
چکیده
منابع مشابه
Non-convex Sparse Regularization
We study the regularising properties of Tikhonov regularisation on the sequence space l with weighted, non-quadratic penalty term acting separately on the coefficients of a given sequence. We derive sufficient conditions for the penalty term that guarantee the well-posedness of the method, and investigate to which extent the same conditions are also necessary. A particular interest of this pape...
متن کاملAnalysis of Multi-stage Convex Relaxation for Sparse Regularization
We consider learning formulations with non-convex objective functions that often occur in practical applications. There are two approaches to this problem: • Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. • Convex relaxation such as L1-regularization...
متن کاملSparse factor analysis via likelihood and ℓ1-regularization
In this note we consider the basic problem to identify linear relations in noise. We follow the viewpoint of factor analysis (FA) where the data is to be explained by a small number of independent factors and independent noise. Thereby an approximation of the sample covariance is sought which can be factored accordingly. An algorithm is proposed which weighs in an l1-regularization term that in...
متن کاملSparse Portfolio Selection via Quasi-Norm Regularization
to obtain an approximate second-order KKT solution of the `p-norm models in polynomial time with a fixed error tolerance, and then test our `p-norm models on CRSP(1992-2013) and also S&P 500 (2008-2012) data. The empirical results illustrate that our `p-norm regularized models can generate portfolios of any desired sparsity with portfolio variance, portfolio return and Sharpe Ratio comparable t...
متن کاملGroup Sparse Optimization via lp, q Regularization
In this paper, we investigate a group sparse optimization problem via `p,q regularization in three aspects: theory, algorithm and application. In the theoretical aspect, by introducing a notion of group restricted eigenvalue condition, we establish an oracle property and a global recovery bound of order O(λ 2 2−q ) for any point in a level set of the `p,q regularization problem, and by virtue o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2017
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2017.2711501